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Mixing patterns in networks

M. E. J. Newman
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We study assortative mixing in networks, the tendency for vertices in networks to be connected to other
vertices that are like~or unlike! them in some way. We consider mixing according to discrete characteristics
such as language or race in social networks and scalar characteristics such as age. As a special example of the
latter we consider mixing according to vertex degree, i.e., according to the number of connections vertices have
to other vertices: do gregarious people tend to associate with other gregarious people? We propose a number of
measures of assortative mixing appropriate to the various mixing types, and apply them to a variety of
real-world networks, showing that assortative mixing is a pervasive phenomenon found in many networks. We
also propose several models of assortatively mixed networks, both analytic ones based on generating function
methods, and numerical ones based on Monte Carlo graph generation techniques. We use these models to probe
the properties of networks as their level of assortativity is varied. In the particular case of mixing by degree, we
find strong variation with assortativity in the connectivity of the network and in the resilience of the network
to the removal of vertices.
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I. INTRODUCTION

The techniques of statistical physics were developed
study the properties of systems of many interacting partic
atoms, or molecules, but their applicability is wider than th
and recent work has fruitfully applied these techniques
economies, ecosystems, social interactions, the Internet,
many other systems of current interest. The component p
of these systems, the analogs of atoms and molecules,
things as traders in a market, or computers on the Inter
are not usually connected together on a regular lattice as
atoms of a crystal are. Nor indeed do their patterns of c
nection normally fit any simple low-dimensional structur
Instead they fall on some more generalized ‘‘network
which may be more or less random depending on the na
of the system. The broadening of the scope of statist
physics to cover these systems has therefore led us to
consideration of the structure and function of networks,
one of the fundamental steps to understanding real-w
phenomena of many kinds. Useful reviews of work in th
area can be found in Refs.@1–3#.

Recent studies of network structure have concentrated
a small number of properties that appear to be commo
many networks and can be expected to affect the function
of networked systems in a fundamental way. Among the
perhaps the best studied are the ‘‘small-world effect’’@4,5#,
network transitivity or ‘‘clustering’’@5#, and degree distribu
tions @6,7#. Many other properties, however, have been
amined and may be equally important, at least in some
tems. Examples include resilience to the deletion of netw
nodes@8–12#, navigability or searchability of networks@13–
15#, community structure@16–18#, and spectral propertie
@19–21#. In this paper we study another important netwo
feature, the correlations between properties of adjacent
work nodes known in the ecology and epidemiology lite
ture as ‘‘assortative mixing.’’

The very simplest representation of a network is a coll
1063-651X/2003/67~2!/026126~13!/$20.00 67 0261
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tion of points, usually called vertices or nodes, joined
gether in pairs by lines, usually called edges or links. Mo
sophisticated network models may introduce other proper
of the vertices or the edges. Edges for example may
directed—they point in one particular direction—or ma
have weights, lengths, or strengths. Vertices can also h
weights or other numerical quantities associated with the
or may be drawn from some discrete set of vertex types
the study of social networks, the patterns of connections
tween people in a society, it has long been known that ed
do not connect vertices regardless of their property or ty
Patterns of friendship between individuals for example
strongly affected by the language, race, and age of the i
viduals in question, among other things. If people prefer
associate with others who are like them, we say that
network shows assortative mixing or assortative matching
they prefer to associate with those who are different it sho
disassortative mixing. Friendship is usually found to be
sortative by most characteristics.

Assortative mixing can have a profound effect on t
structural properties of a network. For example, assorta
mixing of a network by a discrete characteristic will tend
break the network up into separate communities. If peo
prefer to be friends with others who speak their own la
guage, for example, then one might expect countries w
more than one language to separate into communities
language. Assortative mixing by age could cause stratifi
tion of societies along age lines. And while the main focus
this paper is on social networks, it is reasonable to supp
that similar mixing effects are seen in nonsocial netwo
also. We will give some examples of this in Sec. III A.

In this paper, we study assortative mixing of various typ
using empirical network data, analytic models, and num
cal simulation. We demonstrate that assortative~or disassor-
tative! mixing is indeed present in many networks, sho
how it can be measured, and examine its effect on netw
structure and behavior. The outline of the paper is as follo
©2003 The American Physical Society26-1
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In Sec. II we study the effects of assortative mixing by d
crete characteristics such as language or race. In Sec. II
study mixing by scalar properties such as age and part
larly vertex degree; since degree is itself a property of
network topology, the latter type of mixing leads to som
novel network structures not seen with other types. In S
IV we give our conclusions. A preliminary report of some
the results in this paper has appeared previously as Ref.@22#.

II. DISCRETE CHARACTERISTICS

In this section we consider assortative mixing accord
to discrete or enumerative vertex characteristics. Such m
ing can be characterized by a quantityei j , which we define
to be the fraction of edges in a network that connect a ve
of type i to one of typej. On an undirected network thi
quantity is symmetric in its indicesei j 5eji , while on di-
rected networks or bipartite networks it may be asymmet
It satisfies the sum rules

(
i j

ei j 51, (
j

ei j 5ai , (
i

ei j 5bj , ~1!

whereai and bi are the fraction of each type of end of a
edge that is attached to vertices of typei. On undirected
graphs, where the ends of edges are all of the same t
ai5bi @23#.

For example, Table I shows data on the values ofei j for
mixing by race among sexual partners in a 1992 study
ried out in the city of San Francisco, California@24#. This
part of the study focused on heterosexuals, so this is a b
tite network, the two vertex types representing men a
women, with edges running only between vertices of unl
types. This means that in this case the ends of an edge
different and the matrixei j is asymmetric. As the table
shows, mixing is highly assortative in this network, wi
individuals strongly preferring partners from the same gro
as themselves.

A. Measuring discrete assortative mixing

To quantify the level of assortative mixing in a netwo
we define anassortativity coefficientthus

TABLE I. The mixing matrixei j and the values ofai andbi for
sexual partnerships in the study of Cataniaet al. @24#. After Morris
@25#.

Women
Men Black Hispanic White Other ai

Black 0.258 0.016 0.035 0.013 0.323
Hispanic 0.012 0.157 0.058 0.019 0.247
White 0.013 0.023 0.306 0.035 0.377
Other 0.005 0.007 0.024 0.016 0.053
bi 0.289 0.204 0.423 0.084
02612
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5
Tre2uue2uu

12uue2uu
, ~2!

wheree is the matrix whose elements areei j anduuxuu means
the sum of all elements of the matrixx. This formula gives
r 50 when there is no assortative mixing, sinceei j 5aibj in
that case, andr 51 when there is perfect assortative mixin
and ( ieii 51. If the network is perfectly disassortative, i.e
every edge connects two vertices of different types, thenr is
negative and has the value

r min52

(
i

aibi

12(
i

aibi

, ~3!

which lies in general in the range21<r ,0. One might ask
what this value signifies. Why do we not simply haver 5
21 for a perfectly disassortative network? The answer
that a perfectly disassortative network is normally closer t
randomly mixed network than is a perfectly assortative n
work. When there are several different vertex types~e.g.,
four in the case shown in Table I! then random mixing will
most often pair unlike vertices, so that the network appe
to be mostly disassortative. Therefore, it is appropriate t
the valuer 50 for the random network should be closer
that for the perfectly disassortative network than for the p
fectly assortative one.

A quantity with properties similar to those of Eq.~2! has
been proposed previously by Gupta, Anderson, and M
@26#. However, the definition of Gupta, Anderson, and M
gives misleading results in certain situations, such as,
example, when one type of vertex is much less numer
than other types, as is the case in Table I. In this pa
therefore we use Eq.~2!, which does not suffer from this
problem. The difference between the two measures is
cussed in more detail in Appendix A.

Using the values from Table I in Eq.~2!, we find thatr
50.621 for the network of sexual partnerships, implying,
we observed already, that this network is strongly assorta
by race—individuals draw their partners from their ow
group far more often than one would expect on the basis
pure chance.

As another example of the application of Eq.~2!, consider
the network studied by Girvan and Newman@16# represent-
ing the timetable of American college football games,
which vertices represent universities and colleges, and ed
represent regular season games between teams durin
year in question. Colleges are grouped into ‘‘conference
which are defined primarily by geography, and teams n
mally play more often against other teams in their own co
ference than they do against teams from other conferen
In other words, there should be assortative mixing of c
leges by conference in the schedule network. For the 2
season schedule studied in Ref.@16#, we find a value for the
6-2
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assortativity coefficient ofr 50.586, again indicating stron
assortative mixing, i.e., colleges do indeed play games w
their conference partners to a substantially greater de
than one would expect in a randomly mixed network.

It is also useful to know the expected statistical error
the value ofr, so that we can evaluate the significance of o
results. One way to calculate this error is to use the jackk
method@27#. Regarding each of theM edges in a network a
an independent measurement of the contributions to the
ments of the matrixe, we can show that the expected sta
dard deviations r on the value ofr satisfies

s r
25(

i 51

M

~r i2r !2, ~4!

wherer i is the value ofr for the network in which thei th
edge is removed. For example, in the case of the matrix
Table I this givess r50.014, which, when compared wit
the valuer 50.621 shows that our finding of assortative mi
ing is strongly statistically significant—a 40s result.

Although it has a rather different physical interpretatio
the coefficientr is mathematically similar to the intraclas
correlation coefficients used in statistics to compare m
surements across different groups in a population@28#. Stan-
dard results for errors on intraclass correlations can
adapted to the present case to show that another estima
the error onr is @29#

s r
25

1

M

(
i

aibi1F(
i

aibi G2

2(
i

ai
2bi2(

i
aibi

2

12(
i

aibi

, ~5!

which givess r50.012 for the data of Table I, comparab
with the jackknife method. Either method for estimatings r
will be adequate for most purposes—the choice betw
them is a matter of convenience.

B. Models of discrete assortative networks

The generalized random graph models of networks s
ied in the past by various authors@30–36# can be extended to
the case of assortative mixing on discrete characteris
Suppose we are told the degree distributionpk

( i ) for vertices
of type i 51, . . . ,n in a network and the value of the mixin
matrix ei j . Implicitly, we are also told the values of th
quantitiesai and bi , since we can extract them fromei j
using Eq.~1!. We consider the ensemble of all graphs w
these values ofpk

( i ) andei j , which gives us a random grap
model similar in spirit to that of Refs.@30–36# for the case of
specified degree distribution only. Many properties of t
ensemble can be calculated exactly in the limit of large s
tem size, as we now demonstrate.

Suppose that a vertex of typei has degreek. Thek verti-
ces at the other ends of the edges attached to this verte
divided among then possible vertex types according to som
partition $r 1 ,r 2 , . . . ,r n%, where ( j r j5k. The probability
02612
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that the partition$r j% takes a particular value is given by th
multinomial distribution

P( i )~k,$r j%!5k!)
j

1

r j !F ei j

(
j

ei j
G r j

. ~6!

Now, generalizing Ref.@35#, we define a generating functio
for the distributions of the numbers of edges connecting
each type of vertex:

G0
( i )~x1 ,x2 , . . . ,xn!5 (

k50

`

pk
( i )(

$r j %
dS k,(

j
r j D

3P( i )~k,$r j%!x1
r 1x2

r 2
•••xn

r n . ~7!

Performing the sum over$r j%, this gives

G0
( i )~x1 ,x2 , . . . ,xn!5(

k
pk

( i )F (
j

ei j xj

(
j

ei j

G k

5G0
( i )S (

j
ei j xj

(
j

ei j

D , ~8!

where

G0
( i )~x!5(

k
pk

( i )xk ~9!

is the fundamental generating function for the degree dis
bution pk

( i ) , as defined in Ref.@35#. Similarly, for the edges
connected to a vertex of typei reached by following a ran-
domly chosen edge on the graph we have

G1
( i )~x1 ,x2 , . . . ,xn!5G1

( i )S (
j

ei j xj

(
j

ei j

D ~10!

with

G1
( i )~x!5

(
k

kpk
( i )xk21

(
k

kpk
( i )

5
1

zi

dG0
( i )

dx
U

x51

, ~11!

wherezi[G0
( i )8(1) is the mean degree for typei vertices.

Now we consider the total number of vertices reacha
by following an edge that arrives at a vertex of typei. This
number has a distribution that is generated by a genera
function H1

( i ) satisfying a self-consistency condition of th
form
6-3
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H1
( i )~x!5xG1

( i )@H1
(1)~x!, . . . ,H1

(n)~x!#. ~12!

And similarly the distribution of the number of vertice
reachable from a randomly chosen vertex of typei is gener-
ated by

H0
( i )~x!5xG0

( i )@H1
(1)~x!, . . . ,H1

(n)~x!#. ~13!

By solving these two equations simultaneously, we can
rive the complete component size distribution in our mod
Here however, we will just calculate some of the more i
portant average statistics of our networks from the gene
ing functions. For example, the mean numbersi of vertices
reachable from a vertex of typei is

si5
dH0

( i )

dx
U

x51

511G0
( i )8~1!

(
j

ei j H1
( j )8~1!

(
j

ei j

. ~14!

We can write this in matrix form thus as

s511m0•H18~1!, ~15!

wherem0 is the matrix with elementsziei j /ai . Differentiat-
ing Eq. ~12!, we then find that

s511m0•@ I2m1#21
•1, ~16!

where1 is the vector whose elements are all 1, and the m
trix m1 has elements

@m1# i j 5
z2

( i )

z1
( i )

ei j

ai
~17!

with z1
( i )[zi being the mean degree of typei vertices andz2

( i )

being the mean number of neighbors at distance two fro
type i vertex.

When the density of edges on the graph is small,s in Eq.
~16! is finite, but it grows with increasing density and the
diverges when the determinant of the matrixI2m1 reaches
its first zero. This point marks the phase transition at whic
giant component first appears in the network, similar to
phase transition seen in uncorrelated random graphs.
condition det(I2m1)50 for the position of the phase tran
sition is the equivalent of the condition of Molloy and Re
@32# for the position of the phase transition in an uncor
lated random graph of arbitrary degree distribution.

The size of the giant component can also be calculate
a straightforward manner. We defineui to be the probability
that a vertex of typei, reached by following a randomly
chosen edge in the graph, does not belong to the giant c
ponent. This probability is precisely equal to the probabil
that none of the neighbors of that vertex are themse
members of the giant component, and henceui satisfies the
self-consistency condition

ui5G1
( i )~u1 , . . . ,un!. ~18!
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The probability that a randomly chosen vertex of typei is not
a member of the giant component is thenG0

( i )(u1 , . . . ,un),
and the overall fractionS of vertices that are in the gian
component is given by

S512(
i

ai

zi
G0

( i )~u1 , . . . ,un!, ~19!

where we have made use of the fact that the fraction
vertices of typei in the network is equal toai /zi .

The simultaneous solution of Eqs.~18! and ~19! gives us
the value ofS for our network. In many cases we find th
these equations are not solvable in closed form, but they
easily be solved numerically by iteration of Eq.~18! from
suitable starting values for theui , and then substituting the
result into Eq.~19!.

C. Simulating discrete assortative networks

We would also like to be able to generate random n
works with a given level of assortative mixing, in order
check our analytical results and also for use as substrate
other models, such as, for example, epidemiological mod
A simple algorithm for achieving this is the following.

~1! We first choose a size for our graph in terms of t
numberM of edges and we drawM edges from the distribu-
tion ei j . That is, we generateM edges, each one identified b
the types of the vertices that it connects, in some man
such that the fraction of edges connecting vertices of typi
and j tends toei j asM becomes large. In practice, a simp
transformation method works well@37#.

~2! We count the number of ends of edges of each typi,
to give the sumsmi of the degrees of vertices in each clas
We calculate the expected numberni of vertices of each type
from ni5mi /zi ~rounded to the nearest integer!, wherezi is
the desired mean degree of vertices of typei.

~3! We drawni vertices from the desired degree distrib
tion pk

( i ) for type i. In general the degrees of these vertic
will not sum exactly tomi as we want them to. So we choos
one vertex at random, discard it, and draw another from
distributionpk

( i ) until the sum does equalmi .
~4! We pair up themi ends of edges of typei at random

with the vertices we have generated, so that each vertex
the number of attached edges corresponding to its cho
degree.

~5! We repeat from step~3! for each vertex type.
This method correctly generates assortatively mixed gra
with the givenei j in the limit of large graph size. In Sec
III C of this paper we give some examples of simulations
assortatively mixed networks.

III. ASSORTATIVE MIXING BY SCALAR PROPERTIES

A similar, but distinct, form of assortative mixing is mix
ing that depends on one or more scalar properties of netw
vertices. A classic example of mixing of this type seen
many social networks is assortative mixing by age. In Fig
~top panel! we show a scatter plot of the ages of marria
partners in the 1995 U.S. National Survey of Family Grow
6-4
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@38#. As is clear from the figure, there is a strong positi
correlation between the ages, with most of the density in
distribution lying along a rough diagonal in the plot; peop
it appears, prefer to marry others of about the same
although there is some bias towards husbands being o
than their wives. In the bottom panel of the same figure
show a histogram of the age differences in the study, wh
emphasizes the same conclusion@39#.

By analogy with the developments of Sec. II, we can d
fine a quantityexy , which is the fraction of all edges in th
network that join together vertices with valuesx andy for the
age or other scalar variable of interest. The valuesx and y
might be either discrete in nature~e.g., integers, such as ag
to the nearest year! or continuous~exact age!, making exy
either a matrix or a function of two continuous variable
Here, for simplicity, we concentrate on the discrete case,
generalization to the continuous case is straightforward.

As before, we can use the matrixexy to define a measure
of assortativity. We first note thatexy satisfies the sum rule

(
xy

exy51, (
y

exy5ax , (
x

exy5by , ~20!

whereax andby are, respectively, the fraction of edges th
start and end at vertices with valuesx and y. ~On an undi-

FIG. 1. Top, scatter plot of the ages of 1141 married couple
time of marriage, from the 1995 U.S. National Survey of Fam
Growth @38#. Bottom, a histogram of the age differences~male mi-
nus female! for the same data.
02612
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rected, unipartite graph,ax5bx .) Then, if there is no assor
tative mixing exy5axby . If there is assortative mixing one
can measure it by calculating the standard Pearson cor
tion coefficient thus

r 5

(
xy

xy~exy2axby!

sasb
, ~21!

wheresa andsb are the standard deviations of the distrib
tions ax and by . The value ofr lies in the range21<r
<1, with r 51 indicating perfect assortativity andr 521
indicating perfect disassortativity~i.e., perfect negative cor
relation betweenx andy). For the age data from Fig. 1, fo
example, we find thatr 50.574, indicating strong assortativ
mixing once more.

One can construct in a straightforward manner a rand
graph model of a network with this type of mixing exact
analogous to the model presented in Sec. II B. It is also p
sible to generate random representative networks from
ensemble defined byexy using the algorithm described i
Sec. II C. In this paper however, rather than working furth
on the general type of mixing described here, we will co
centrate on one special example of assortative mixing b
scalar property, which is particularly important for many
the networks we are interested in, namely mixing by ver
degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type describ
above requires that the vertices of the network of inter
have suitable scalar properties attached to them, such as
or income in social networks. In many cases, however, d
are not available for these properties to allow us to ass
whether the network is assortatively mixed. But there is o
scalar vertex property that is always available for every n
work, and that is vertex degree. So long as we know
network structure we always know the degree of a vert
and then we can ask whether vertices of high-degree pre
entially associate with other vertices of high degree. Do
gregarious people hang out with other gregarious peop
This has been a topic of considerable discussion in the p
ics literature@40–44#. As we will show, many real-world
networks do show significant assortative~or disassortative!
mixing by vertex degree.

Assortative mixing by degree can be quantified in exac
the same way as for other scalar properties of vertices, u
Eq. ~21!. Taking the example of an undirected network a
using the notation of Ref.@22#, we defineejk to be the frac-
tion of edges that connect vertices of degreesj andk. In fact,
we choosej and k to be theexcess degreesof the vertices
~also calledremaining degreein Ref. @22#!, which are one
less than the degrees of the vertices themselves. This is
cause in most cases we are interested in the number of e
attached to a vertex other than the particular edge we ar
the moment looking at.

If the degree distribution of the graph as a whole ispk ,
i.e., pk is the probability that a randomly chosen vertex w

at
6-5
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have degreek, then the excess degree of the vertex at the
of an edge is distributed according to@35#

qk5
~k11!pk11

z
, ~22!

where z5(kkpk is the mean degree in the network. Th
distributionqk is related toejk via

(
j

ejk5qk . ~23!

The correct assortativity coefficient for mixing by vertex d
gree in an undirected network is

r 5

(
jk

jk~ejk2qjqk!

sq
2

, ~24!

wheresq is the standard deviation of the distributionqk . For
a directed network the equivalent expression is

r 5

(
jk

jk~ejk2qj
inqk

out!

s insout
, ~25!

where ejk is now the probability that a randomly chose
directed edge leads into a vertex of in-degreej and out of a
vertex of out-degreek @45#. For the purposes of calculatingr
for an actual network of specified vertices and edges, we
rewrite this in the form

r 5

(
i

j iki2M 21(
i

j i(
i 8

ki 8

AF(
i

j i
22M 21S (

i
j i D 2GF(

i
ki

22M 21S (
i

ki D 2G
,

~26!

where j i and ki are the excess in-degree and out-degree
the vertices that thei th edge leads into and out of respe
tively, andM is again the number of edges. For an undirec
network we can use the same formula—we simply repl
each undirected edge by two directed ones leading in op
site directions. Alternatively, one can apply directly the fo
mula given in Ref.@22#, Eq. ~4!, to the undirected network
As before, errors on the measured values ofr can be calcu-
lated using the jackknife method and Eq.~4!.

In Table II we show the measured values ofr for degree
correlations in undirected and directed networks of a var
of different types, along with the expected errors on th
values. The table reveals an interesting feature: essential
the social networks examined are significantly assortative
degree, i.e., high-degree vertices tend to be connecte
other high-degree vertices, while all the technological a
biological networks are disassortative. Three of the val
for r, for the network of student relationships, the pow
grid, and the graph of software dependencies, are null res
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meaning that they are not statistically different from zero. A
the others however fit the pattern clearly, with positive valu
of r for the social networks and negative values for all t
others.

What is the explanation of this phenomenon? In all pro
ability, there are a number of different mechanisms at wo
Some possibilities are the following.

~1! In the social networks it is entirely possible, and
often assumed in the sociological literature, that simi
people do attract one another, and therefore that there c
be a real preference among gregarious people for associ
with other gregarious people, and similarly for hermits.

~2! On the other hand, the networks of collaborations b
tween academics, actors, and businesspeople considered
are affiliation networks, i.e., networks in which people a
connected together by membership of common groups~au-
thors of a paper, actors in a film, etc.!. Since all members of
a group are thus connected to all other members, the pos
correlations between degrees may at least in part reflec
fact that the members of a large~small! group are connected
to the other members of the same large~small! group.

~3! In the Internet and the World Wide Web there may
organizational reasons for degree anticorrelation betw
vertices. The high-degree vertices in these networks are o
connectivity providers~internet! or directories~web!, which
by definition tend to be connected to the ‘‘little people’’—th
individual service subscribers in the case of the interne
the individual web pages on the web.

~4! Maslov and Sneppen@41# have shown that disassorta
tivity can be produced as a finite-size effect by the constra
that no two vertices in a network are connected by more t
one edge. This constraint causes high-degree vertices to
pel’’ one another, producing negative values ofr. This expla-
nation could account for at least a part of the disassorta
mixing we see in the Internet, the protein and metabolic n
works, and the food webs, although it cannot be appl
directly to the web and neural networks, for which vert
pairs can and often do have more than one connection.

It appears therefore that some of the degree correlat
we see in our networks could have real social or organ
tional origins, while others may be artifacts of the types
networks we are looking at and the constraints that
placed on their structure.

B. Models of assortative mixing by degree

In Ref. @22# we studied the ensemble of graphs that ha
a specified value of the matrixejk and solved exactly for its
average properties using generating function methods sim
to those of Sec. II B. We showed that the phase transitio
which a giant component first appears in such networks
curs at a point given by det(I2m)50, wherem is the ma-
trix with elementsmjk5kejk /qj . One can also calculate ex
actly the size of the giant component, and the distribution
sizes of the small components below the phase transit
While these developments are mathematically elegant, h
ever, their usefulness is limited by the fact that the genera
functions involved are rarely calculable in closed form f
arbitrary specifiedejk , and the determinant of the matrix (I
6-6
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TABLE II. Size n, degree assortativity coefficientr, and expected errors r on the assortativity, for a
number of social, technological, and biological networks, both directed and undirected. Social net
coauthorship networks of~a! physicists and biologists@46# and~b! mathematicians@47#, in which authors are
connected if they have coauthored one or more articles in learned journals;~c! collaborations of film actors
in which actors are connected if they have appeared together in one or more movies@5,7#; ~d! directors of
fortune 1000 companies for 1999, in which two directors are connected if they sit on the board of dir
of the same company@48#; ~e! romantic~not necessarily sexual! relationships between students at a U.S. h
school@49#; ~f! network of email address books of computer users on a large computer system, in wh
edge from userA to userB indicates thatB appears inA’s address book@50#. Technological networks:~g!
network of high voltage transmission lines in the Western States Power Grid of the United States@5#; ~h!
network of direct peering relationships between autonomous systems on the Internet, April 2001@51#; ~i!
network of hyperlinks between pages in the World Wide Web domain nd.edu,circa 1999@52#; ~j! network of
dependencies between software packages in the GNU/Linux operating system, in which an edge from
ageA to packageB indicates thatA relies on components ofB for its operation. Biological networks:~k!
protein-protein interaction network in the yeastS. Cerevisiae@53#; ~l! metabolic network of the bacteriumE.
Coli @54#; ~m! neural network of the nematode wormC. Elegans@5,55#; tropic interactions between specie
in the food webs of~n! Ythan Estuary, Scotland@56# and ~o! Little Rock Lake, Wisconsin@57#.

Group Network Type Sizen Assortativity r Error s r

a Physics coauthorship undirected 52 909 0.363 0.00
a Biology coauthorship undirected 1 520 251 0.127 0.000
b Mathematics coauthorship undirected 253 339 0.120 0.00

Social c Film actor collaborations undirected 449 913 0.208 0.00
d Company directors undirected 7 673 0.276 0.004
e Student relationships undirected 573 20.029 0.037
f Email address books directed 16 881 0.092 0.004

g Power grid undirected 4 941 20.003 0.013
Technological h Internet undirected 10 697 20.189 0.002

i World Wide Web directed 269 504 20.067 0.0002
j Software dependencies directed 3 162 20.016 0.020

k Protein interactions undirected 2 115 20.156 0.010
l Metabolic network undirected 765 20.240 0.007

Biological m Neural network directed 307 20.226 0.016
n Marine food web directed 134 20.263 0.037
o Freshwater food web directed 92 20.326 0.031
a
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2m) almost never is. In this paper, therefore, we take
alternative approach, making use of computer simulation

We would like to generate on a computer a random n
work having, for instance, a particular value of the mat
ejk . @This also fixes the degree distribution, via Eq.~23!.# In
Ref. @22# we discussed one possible way of doing this us
an algorithm similar to that of Sec. II C. One would dra
edges from the desired distributionejk and then join the de-
greek ends randomly in groups ofk to create the network
~This algorithm has also been discussed recently
Dorogovtsev, Mendes, and Samukhin@42#.! As we pointed
out, however, this algorithm is flawed because in order
create a network without any dangling edges the numbe
degreek ends must be a multiple ofk for all k. It is very
unlikely that these constraints will be satisfied by chan
and there does not appear to be any simple way of arran
for them to be satisfied without introducing bias into t
ensemble of graphs. Instead, therefore, we use a Monte C
sampling scheme which is essentially equivalent to
Metropolis–Hastings method widely used in the mathem
cal and social sciences for generating model netwo
02612
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@58,59#. The algorithm is as follows.
~1! Given the desired edge distributionejk , we first cal-

culate the corresponding distribution of excess degreesqk
from Eq. ~23!, and then invert Eq.~22! to find the degree
distribution:

pk5
qk21 /k

(
j

qj 21 / j

. ~27!

Note that this equation cannot tell us how many vertic
there are of degree zero in the network. This information
not contained in the edge distributionejk since no edges
connect to degree-zero vertices, and so must be spec
separately. On the other hand, most of the properties of
works with which we will be concerned here do not depe
on the number of degree-zero vertices, so we can safely
p050 for the purposes of this paper.

~2! We draw a degree sequence, a specific setki of de-
grees of the verticesi 51, . . . ,N, from the distributionpk ,
6-7
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M. E. J. NEWMAN PHYSICAL REVIEW E67, 026126 ~2003!
and connect vertices together randomly in pairs to genera
random graph, as described, for instance, by Molloy a
Reed@32#.

~3! We choose two edges at random from the graph.
us denote these by the vertex pairs (v1 ,w1) and (v2 ,w2) that
they connect.

~4! We measure the excess degreesj 1 ,k1 , j 2 ,k2 of the
verticesv1 ,w1 ,v2 ,w2 and then we remove the two edg
and replace them with two new ones (v1 ,v2) and (w1 ,w2)
with probability

P5H ej 1 j 2
ek1k2

ej 1k1
ej 2k2

if ej 1 j 2
ek1k2

,ej 1k1
ej 2k2

1 otherwise.

~28!

~5! Repeat from step~3!.

Clearly this swap procedure preserves the degree
quence. It is also ergodic over the set of graphs with t
degree sequence, i.e., it can reach any graph within that s
a finite number of moves. To see this, consider any confi
ration of the graph other than the desired target configura
and choose any vertex pair that is not joined by an edg
that configuration butis joined by an edge in the targe
These vertices must necessarily each be attached to at
one other edge that does not exist in the target configura
Take these edges and perform the swap procedure on t
This always increases the number of edges that the con
ration has in common with the target. And since it is alwa
possible to do this, it immediately follows that any targ
configuration can be reached in at mostM such moves,
whereM is the number of edges in the network.~Actually,
M21 will suffice, since the last edge will always automa
cally be in the correct position by a process of eliminatio!

Our algorithm also satisfies detailed balance. We wo
like to sample graph configurationsm with probabilities@60#

pm5)
i 51

M

ej iki
, ~29!

where j i ,ki are the excess degrees of the vertices at the e
of the i th edge. It is trivial to show that with the choice o
transition probabilities given in Eq.~28!, we satisfy detailed
balance in the form

pmP~m→n!5pnP~n→m! ~30!

for all pairsm,n of states.
Since our algorithm satisfies both ergodicity and detai

balance, it immediately follows@37# that in the limit of long
time it samples graph configurations correctly from the d
tribution Eq. ~29!. It also turns out to be a reasonably ef
cient algorithm in practice. In the simulations reported he
the mean fraction of proposed Monte Carlo moves that w
accepted never fell below 50% for any parameter values

To use this algorithm we also need to choose a value
the matrixejk . We have a lot of freedom about how we d
this. Suppose for example that we wish to simulate an un
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rected network, so thatejk is symmetric. A rank-n symmetric
matrix has 1

2 n(n11) degrees of freedom,n of which are
fixed in this case by the requirement, Eq.~23!, that the rows
and columns sum toqk , leaving 1

2 n(n21) that can be freely
chosen. @One could think for example of choosing th
1
2 n(n21) off-diagonal elements ofejk and then satisfying
Eq. ~23! by choosing then diagonal elements to give the row
and column sums the desired values.#

A simple example of a disassortative choice forejk is the
set of matrices taking the form

ejk
(d)5qjxk1xjqk2xjxk , ~31!

wherexk is any distribution normalized such that(kxk51. It
is easy to see that this choice satisfies the constraints onejk ,
and the resulting value ofr is

r d52
~mq2mx!

2

sq
2 , ~32!

which is always negative~or zero!. Heremq andmx are the
means of the distributionsqk andxk , respectively.

Being a probability,ejk is also constrained to lie in the
range 0<ejk<1 for all j ,k. To ensure that Eq.~31! never
becomes negative we should choosexk to decay faster than
qk .

Suppose for example that we are interested, as m
people seem to be these days, in networks that have po
law degree distributions,pk;k2t @1–3,7,34,52,61–65#. True
power laws unfortunately are troublesome to deal with;
crucial distributionqk has a divergent mean unlesst.3,
which it seldom is for real-world networks~see, for instance
Ref. @2#, Table II!. Instead, therefore, following Ref.@35#, we
here examine the exponentially truncated power-law dis
bution

pk5
k2te2k/k

Li t~e21/k!
for k>1, ~33!

where the function Lin(x), which acts here as a normalizin
constant, is thenth polylogarithm ofx. This gives a similar
distributionqk;(k11)2t11e2(k11)/k for the excess degree
and we choosexk to have the same functional form, but wit
a different cutoff parameterk8, wherek8,k, to ensure that
ejk.0. In Fig. 2 we show a plot of the resultingejk for t
52.5, k5100, k8510. The disassortative nature of th
choice forejk is evident from the concentration of probab
ity along the edges of the matrix in the figure.

Introducing a cutoff in the degree distribution also pr
vides us with a parameter, namelyk, that can, as we will
shortly see, be conveniently manipulated to produce a ph
transition at which a giant-component appears in the n
work.

We can also make an assortative matrixejk by writing

ejk
(a)52qjqk2ejk

(d) , ~34!

which gives a value for the assortativity coefficient ofr a5
2r d , while still having the same degree distribution. Mo
6-8
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MIXING PATTERNS IN NETWORKS PHYSICAL REVIEW E67, 026126 ~2003!
generally, we would like to be able to varyr freely, keeping
the degree distribution fixed. We can do this by writingejk in
the form

ejk5qjqk1rsq
2mjk , ~35!

where the symmetric matrixmjk has all row and column
sums zero and is normalized such that

(
jk

jkmjk51. ~36!

For any choice ofmjk satisfying these constraints, Eq.~35!
gives us a one-parameter family of networks parametrized
the assortativity coefficientr. We can for example choose

mjk;qjqk2ejk
(d)5~qj2xj !~qk2xk!, ~37!

for any correctly normalizedxk . Then Eq.~35! allows us to
interpolate smoothly betweenejk

(d) andejk
(a) ~and beyond! by

simply varying the value ofr. Note that wheneverr 50, we
get a simple random graph without degree correlations
the type discussed by Molloy and Reed@32# and others@66#.

C. Simulation results

For ejk chosen according to Eqs.~35! and ~37!, with qk
andxk taking the same truncated power-law form as in F
2, we have performed simulations for a variety of values
the parameterst, k, andk8.

In Fig. 3 we show the size of the largest component in
graph as a function ofk, for three different values of the
assortativity coefficientr. As the cutoff parameterk in-
creases, the mean degree of the graph increases also, s
the graph becomes more dense, ultimately passing the
cal point at which a giant component develops. The fig
reveals two findings of particular note.

~1! The position of the phase transition at which the gia
component appears moves to higher values ofk as the value

FIG. 2. Density plot of the matrixejk
(d) , Eq. ~31!, for t52.5,

k5100, k8510. Darker squares represent higher values ofejk .
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of r decreases. That is, the more assortative a network is
lower the edge density at which a giant component first
pears. This is intuitively reasonable. In assortatively mix
networks, the high-degree vertices tend to associate pre
entially with one another, sticking together and forming wh
in the epidemiological literature is called a ‘‘core group
Within this core group the edge density is higher than it is
the graph as a whole, since the vertices in the group h
higher-than-average degree. Thus one would expect to s
giant-component forming in the core group before it wou
form in a graph of the same average density but with
assortative mixing. Conversely, in graphs that are disasso
tively mixed, the phase transition happens at a higher den
than in neutrally mixed graphs.

~2! The size of the giant component in the limit of largek
is smaller for the assortatively mixed graph than for the n
tral and disassortative ones. While this might seem at firs
be at odds with the result that assortative graphs sho
phase transition at lower density, it is really a reflection
the same underlying mechanism. Although the presence
core group in an assortative graph allows it to percolate
lower average density than other graphs, it also means
the density in other parts of the graph, outside the c
group, is lower, and hence that the giant component is
likely to extend into those regions. Thus the giant compon
is confined to the core of the network, and cannot grow
large as in a neutral or disassortative network.

A question of considerable interest in the study of n
worked systems is that of network resilience to the delet
of vertices. Suppose vertices are removed one by one fro
network. How many must be removed before the giant co
ponent of the network is destroyed and network commun
tion between distant vertices can no longer take place? M
networks, particularly those with highly skewed degree d
tributions, are found to be resilient to the random deletion
vertices but susceptible to the targeted deletion specific
of those vertices that have the highest degrees@8,9,11,67#. As
we now show, these general results are modified by the p

FIG. 3. Monte Carlo simulation results for the size of the gia
component in graphs with the degree distribution Eq.~33!, as a
function of the cutoff parameterk, with t52.5 andk852. The
individual curves are for different values of the assortativity,
marked. Each data point is an average over 100 graphs of 100
vertices.
6-9
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M. E. J. NEWMAN PHYSICAL REVIEW E67, 026126 ~2003!
ence of assortative mixing in the network.
In Fig. 4, we show the size of the largest component

five networks with different values ofr as vertices are re
moved in decreasing order of their degree—i.e., highest
gree vertices first@68#. As the figure shows, although each
the networks has the same degree distribution, there is
matic variation in the resilience of the networks with the
assortativity. For the most assortative network, withr 50.2,
it requires the removal of about ten times as many hi
degree vertices to destroy the giant component as for
most disassortative one, withr 520.2, even though the dis
assortative network starts out with a giant component ab
twice as big.

This finding fits naturally with our picture of an assort
tive network as dominated by a core group of interconnec
high-degree vertices. Such a core group provides robust
to the network by concentrating all the obvious target ve
ces together in one portion of the graph. Removing th
high-degree vertices is still one of the most effective ways
destroy network connectivity, but it is less effective becau
by removing them all from the same portion of the graph
fail to attack other portions. And if those other portions a
themselves percolating, then a giant component will per
even as the highest-degree vertices vanish.

Conversely, the disassortatively mixed network is parti
larly susceptible to removal of high-degree vertices beca
those vertices are strewn far apart across the network, so
attacking them attacks all parts of the network at once.

One can also ask about the resilience of networks un
random failure of their vertices~rather than targeted attack!
@8,10,11#. Although we do not treat this case in detail here
is reasonable to suppose that it is similar to the case of
geted attack. If assortative mixing makes networks more
silient against removal of their highest-degree vertices, t
presumably they will also be resilient against removal
random ones; random vertex failure will do most dama

FIG. 4. The size of the largest component in a network a
fraction of system size as the highest-degree vertices are rem
one by one. Each curve is for a single network of 107 vertices
generated using the Monte Carlo method described in the text,
the degree distribution and the matrixejk chosen according to Eqs
~31! and~33!, with t52.5, k5500,k855, andr values as marked
Clearly the most assortatively mixed network (r 50.2) is consider-
ably more robust against the removal of vertices than the m
disassortative (r 520.2).
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when it happens to hit high-degree vertices, but, as we h
seen, this vulnerability is diminished by the concentration
the high-degree vertices in the core group. Some qualita
behaviors of the system may be unaffected by assortativ
however. For example, it is known that the fraction of ver
ces that must randomly fail to destroy the giant componen
a network with a power-law degree distribution and uncor
lated degrees tends to unity as graph size becomes la
provided the exponent of the power-law satisfiest,3 @10#.
Vazquez and Moreno@69# have recently shown that this re
sult is not affected by the presence of assortative mixing
degree in the network, although disassortative mixing c
make a difference.

D. Discussion

The results found here could have applications in a v
ety of areas. Consider for example, the spread of disease
networks, which has been the subject of much attention
the recent networks literature@70–77#. The largest compo-
nent of the contact network over which a disease spre
represents the largest possible disease outbreak on tha
work, and a network with no giant component cannot sh
an epidemic~system-wide! outbreak. Thus our finding, that
giant component forms more easily in a network that is
sortatively mixed by degree, suggests that in such netwo
epidemic outbreaks would become possible at a lower e
density than in the corresponding disassortative network
the language of epidemiology, the core group of an asso
tively mixed network forms a ‘‘reservoir,’’ which can sustai
an outbreak of the disease even when the density of the
work as a whole is too low to do so. On the other hand,
smaller asymptotic size of the giant component in an as
tatively mixed network seems to imply that, when they o
cur, epidemics in such networks would be restricted to
smaller segment of the population than in a similar disass
tative network—the outbreak is confined mostly to the co
group and does not spread to the population as a whole. T
from the epidemiological point of view there are both go
and bad sides to the phenomenon of assortativity.

One could test these predictions explicitly by studyi
epidemic models such as SIR or SIRS models@78,79# on
assortatively mixed model networks of the type introduc
here. Some studies of this kind have already been car
out—see, for example, Refs.@44# and @80#—although the
particular conjectures put forward here have not been c
clusively verified.

Our findings on network resilience also have some pr
tical implications. In the context of epidemiology, for in
stance, removal of vertices from the network might cor
spond to immunization of individuals to prevent the spre
of disease. Assuming that the goal of a vaccination progr
is to destroy network connectivity so that the disease in qu
tion cannot spread, our findings suggest that even targ
vaccination strategies would be less effective in assorta
networks than in disassortative or neutral ones because o
resilience of the network to this type of attack. In other co
texts, however, resilience is a good thing. For example
would like to make networks such as the internet and ot
communication or distribution networks resilient against
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MIXING PATTERNS IN NETWORKS PHYSICAL REVIEW E67, 026126 ~2003!
tacks on their vertices. In this context assortative mix
would be beneficial.

Unfortunately, when we look at Table II, we find a di
couraging picture. As we pointed out in Sec. III A, almost
the social networks we have looked at are significantly
sortative, meaning that they would be robust to vertex
moval. But these are the very networks by which dise
spreads, those that we would like to be able to attack us
vaccination strategies. Even the email network, which is
evant to the spread of computer viruses@50#, is assortative
and hence resilient. On the other hand, the technological
works like the Internet, which we would like to be able
protect, are disassortative, and hence particularly vulner
to targeted attack.

IV. CONCLUSIONS

In this paper, we have studied the phenomenon of as
tative mixing in networks, which is the tendency for vertic
in networks to connect preferentially to other vertices t
are like them in some way. This preference may take a n
ber of forms. Mixing may follow discrete or enumerativ
characteristics. In the social networks that have been
main focus of this paper, connections between people ma
assortative by language, for example, or by race—peo
may prefer to associate with others who speak the same
guage as they do or are of the same race. Mixing can als
dictated by scalar characteristics such as age or incom
special case of mixing by a scalar characteristic is mix
according to vertex degree, which has been shown pr
ously to be present in a variety of networks, including no
social ones such as the Internet and protein interaction
works. Mixing can also be disassortative, meaning t
vertices in the network preferentially form connections
others that are unlike them.

We have proposed some simple measures for these t
of mixing, which we call assortativity coefficients. The
measures are positive or negative for assortative or disas
tative mixing, respectively, and zero for neutrally mixed n
works. Applying our measures to a broad selection of n
work data drawn from various real-world situations we ha
shown that the phenomenon of assortative mixing is ind
widespread, with only a few of the networks studied show
no statistically significant biases in their mixing patterns.
the case of mixing by vertex degree, a remarkable pat
emerges. Almost all the social networks studied show p
tive assortativity coefficients while all other types of ne
works, including technological and biological network
show negative coefficients, i.e., disassortative mixing. O
three networks that showed no significant trend either w
failed to follow this rule. We have offered some conjectur
about the origin of this striking regularity, but we believe
unlikely that any single mechanism can explain the mix
patterns of all of these disparate networks.

We have also proposed a number of models of asso
tively mixed networks, for mixing both by discrete and b
scalar characteristics. For each of the mixing types con
ered it is possible to create random graph models for wh
one can calculate exactly by generating function meth
02612
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certain average properties of network ensembles. We h
also described Monte Carlo methods for generating rand
graphs drawn from each of the classes discussed with sp
fied values of the mixing parameters.

For the case of mixing by vertex degree we have p
formed extensive simulations. Two results of particular int
est emerge from these studies. First, we find that netwo
that are assortatively mixed by degree percolate more ea
that their disassortative counterparts. That is, a giant com
nent of connected vertices forms in the network at low
edge density than in another network with the same deg
distribution but zero or negative assortativity. This res
may imply, for instance, that assortatively mixed social n
works would support epidemic disease outbreaks more ea
than disassortatively mixed ones, which would be a dishe
ening conclusion, given our finding that most social n
works appear to be assortative.

Second, we find that assortatively mixed networks
more robust to the deletion of their vertices than disasso
tively mixed or neutral networks. We have studied in partic
lar the case of the targeted deletion of the highest-deg
vertices, which has been suggested as a possible vaccin
strategy for breaking up networks of disease-causing c
tacts, but it is reasonable to suppose that the same result
extend also to the random deletion of vertices. This result
leads to a rather gloomy conclusion: targeted vaccina
strategies may be less effective than we would hope in p
venting disease because of the assortative and hence res
nature of social networks, while on the other hand netwo
that we would hope to protect against vertex removal, co
munication networks like the internet, for instance, will b
particularly susceptible because of their disassortative nat
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APPENDIX A: THE ASSORTATIVITY MEASURE
OF GUPTA, ANDERSON, AND MAY

Gupta, Anderson, and May@26# have defined a measur
of assortative mixing by discrete types different from the o
that we have introduced in Sec. II A. In our notation the
measure is

Q5

(
i

ai
21~eii 2aibi !

n21
5

(
i

eii /ai21

n21
, ~A1!

where as beforen is the number of vertex types, and we ha
made use of( ibi51. Like our measure, this measure is 0 f
a neutrally mixed network and 1 for a perfectly assortat
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network. In general, however, the values of the two measu
are quite different. Here we give a simple example to illu
trate the difference between the two.

Consider a network with three types of vertices. There
100 vertices of type 1, 100 of type 2, and 2 of type 3. T
vertices of types 1 and 2 mix indiscriminately with on
other—connections from 1 to 2 are as likely as from 1 to
and so forth. The vertices of type 3 however, associate o
among themselves and not with types 1 and 2 at all. Thi
reflected in the matrixe for the 202 vertices thus

e5
1

202S 50 50 0

50 50 0

0 0 2
D . ~A2!

Clearly most of this network—99% of it, in fact—is mixin
randomly, and hence we would expect the assortativity co
ficient to be close to zero. The value ofr for the matrix above
go

e

tt

E

-

r-

A

92

02612
es
-

e
e

,
ly
is

f-

reflects this; we findr 50.029. The measure of Gupta
Anderson, and May@26#, however, takes a valueQ50.50.
This appears to indicate that the network has very str
assortative mixing, when in fact it does not. The reason
this is that the measure of Gupta, Anderson, and May, ra
than giving each vertex in the network equal weight, weig
eachtype of vertex equally, so that vertices that belong
large groups get less weight in the calculation than thos
small groups. In the present case, where one group is
small, the vertices in that group are weighted very heav
and since those vertices mix perfectly assortatively, the va
of Q is, as a result, high. If we remove these vertices fro
the network, the value of Gupta, Anderson, and May’sQ
coefficient jumps to zero. Thus the two vertices in the th
group have a disproportionately large effect on the value
Q.

The solution to this problem is to give each vertex eq
weight in the calculation, which is precisely what our me
surer does.
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@44# M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Phys. R

E. ~to be published!, e-print cond-mat/0208163.
@45# One can also calculate a value forr by simply ignoring the

directed nature of the edges in a directed network. This
proach, which we adopted in Ref.@22#, will in general give a
different figure from that given by Eq.~25!. While Eq. ~25!
will normally give a more meaningful result for a directe
network, there may be cases in which ignoring direction is
correct thing to do. For example, in a food web one might o
be interested in which species have tropic relations with w
others, and not in which direction that relation lies in terms
energy or carbon flow.

@46# M.E.J. Newman, Proc. Natl. Acad. Sci. U.S.A.98, 404~2001!.
@47# J.W. Grossman and P.D.F. Ion, Congr. Numer.108, 129~1995!.
@48# G. F. Davis, M. Yoo, and W. E. Baker~unpublished!.
@49# P. S. Bearman, J. Moody, and K. Stovel~unpublished!.
@50# M.E.J. Newman, S. Forrest, and J. Balthrop, Phys. Rev. E66,

035101~2002!.
@51# Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker,

W. Willinger, in Proceedings of the 21st Annual Joint Confe
ence of the IEEE Computer and Communications Socie
~IEEE Comput. Soc., Los Alanitos, CA, 2002!.

@52# R. Albert, H. Jeong, and A.-L. Baraba´si, Nature~London! 401,
130 ~1999!.
02612
E

l.

r

n
ly
e
of
g
s,

t

.

-

e

h
f

nd

s

@53# H. Jeong, S. Mason, A.-L. Baraba´si, and Z.N. Oltvai, Nature
~London! 411, 41 ~2001!.

@54# H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Bara
bási, Nature~London! 407, 651 ~2000!.

@55# J.G. White, E. Southgate, J.N. Thompson, and S. Brenner,
los. Trans. R. Soc. London, Ser. A314, 1 ~1986!.

@56# M. Huxham, S. Beaney, and D. Raffaelli, Oikos76, 284
~1996!.

@57# N.D. Martinez, Ecol. Monogr.61, 367 ~1991!.
@58# D. Strauss, SIAM Rev.28, 513 ~1986!.
@59# T.A.B. Snijders, J. Soc. Struct.2 ~2002!.
@60# Strictly these probabilities are only correct in a ‘‘canonic

ensemble’’ of graphs in which the degree distribution is fix
rather than the degree sequence. This ensemble and the fi
degree-sequence one studied here, however, become eq
lent in the limit of large graph size; the error introduced he
by substituting one for the other is of the order ofN21 and is
small compared with other sources of error in our simulatio

@61# D.J. de S. Price, Science149, 510 ~1965!.
@62# S. Redner, Eur. Phys. J. B4, 131 ~1998!.
@63# M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. C

mun. Rev.29, 251 ~1999!.
@64# F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, and Y
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