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Mixing patterns in networks
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We study assortative mixing in networks, the tendency for vertices in networks to be connected to other
vertices that are likéor unlike) them in some way. We consider mixing according to discrete characteristics
such as language or race in social networks and scalar characteristics such as age. As a special example of the
latter we consider mixing according to vertex degree, i.e., according to the number of connections vertices have
to other vertices: do gregarious people tend to associate with other gregarious people? We propose a number of
measures of assortative mixing appropriate to the various mixing types, and apply them to a variety of
real-world networks, showing that assortative mixing is a pervasive phenomenon found in many networks. We
also propose several models of assortatively mixed networks, both analytic ones based on generating function
methods, and numerical ones based on Monte Carlo graph generation techniques. We use these models to probe
the properties of networks as their level of assortativity is varied. In the particular case of mixing by degree, we
find strong variation with assortativity in the connectivity of the network and in the resilience of the network
to the removal of vertices.
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[. INTRODUCTION tion of points, usually called vertices or nodes, joined to-
gether in pairs by lines, usually called edges or links. More
The techniques of statistical physics were developed tgophisticated network models may introduce other properties
study the properties of systems of many interacting particlespf the vertices or the edges. Edges for example may be
atoms, or molecules, but their applicability is wider than this,directed—they point in one particular direction—or may
and recent work has fruitfully applied these techniques tchave weights, lengths, or strengths. Vertices can also have
economies, ecosystems, social interactions, the Internet, amekights or other numerical quantities associated with them,
many other systems of current interest. The component parts may be drawn from some discrete set of vertex types. In
of these systems, the analogs of atoms and molecules, sutte study of social networks, the patterns of connections be-
things as traders in a market, or computers on the Internetween people in a society, it has long been known that edges
are not usually connected together on a regular lattice as tha#o not connect vertices regardless of their property or type.
atoms of a crystal are. Nor indeed do their patterns of conPatterns of friendship between individuals for example are
nection normally fit any simple low-dimensional structure. strongly affected by the language, race, and age of the indi-
Instead they fall on some more generalized “network,” viduals in question, among other things. If people prefer to
which may be more or less random depending on the naturassociate with others who are like them, we say that the
of the system. The broadening of the scope of statisticahetwork shows assortative mixing or assortative matching. If
physics to cover these systems has therefore led us to thiey prefer to associate with those who are different it shows
consideration of the structure and function of networks, aglisassortative mixing. Friendship is usually found to be as-
one of the fundamental steps to understanding real-worldortative by most characteristics.
phenomena of many kinds. Useful reviews of work in this  Assortative mixing can have a profound effect on the
area can be found in Refgl-3]. structural properties of a network. For example, assortative
Recent studies of network structure have concentrated omixing of a network by a discrete characteristic will tend to
a small number of properties that appear to be common tbreak the network up into separate communities. If people
many networks and can be expected to affect the functioningrefer to be friends with others who speak their own lan-
of networked systems in a fundamental way. Among theseguage, for example, then one might expect countries with
perhaps the best studied are the “small-world effdet5], more than one language to separate into communities by
network transitivity or “clustering”[5], and degree distribu- language. Assortative mixing by age could cause stratifica-
tions [6,7]. Many other properties, however, have been extion of societies along age lines. And while the main focus of
amined and may be equally important, at least in some syshis paper is on social networks, it is reasonable to suppose
tems. Examples include resilience to the deletion of networkhat similar mixing effects are seen in nonsocial networks
nodeq 8—12|, navigability or searchability of networfd3—  also. We will give some examples of this in Sec. Ill A.
15], community structurd16-18, and spectral properties In this paper, we study assortative mixing of various types
[19-21]. In this paper we study another important networkusing empirical network data, analytic models, and numeri-
feature, the correlations between properties of adjacent netal simulation. We demonstrate that assortatmedisassor-
work nodes known in the ecology and epidemiology litera-tative) mixing is indeed present in many networks, show
ture as “assortative mixing.” how it can be measured, and examine its effect on network
The very simplest representation of a network is a collecstructure and behavior. The outline of the paper is as follows.
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TABLE I. The mixing matrixe;; and the values dd; andb; for

sexual partnerships in the study of Cataeiaal.[24]. After Morris 2 e”—z a;b; Tre ||e2||
(251 - - — 2
-]

Women 1_2 ajb 1l
Men Black Hispanic White Other g
Black 0.258 0.016 0035 0013 0323 Whereeisthe matrix whose elements ag and||x|| means
Hispanic 0.012 0.157 0.058 0019 0247 thesum of all elements of the matrk This formula gives
White 0.013 0.023 0.306 0.035 0.377 [=0 when there is no assortative mixing, sirgg=a;b; in
Other 0.005 0.007 0.024 0016 0053 thatcase, and=1 when there is perfect assortative mixing
b 0.289 0.204 0.423 0.084 and>;e; =1. If the network is perfectly disassortative, i.e.,

i : . . .

every edge connects two vertices of different types, thisn
negative and has the value

In Sec. Il we study the effects of assortative mixing by dis-

crete characteristics such as language or race. In Sec. Il we > apb;
study mixing by scalar properties such as age and particu- _ i
- g ic i Fmin= — ’ (3)
larly vertex degree; since degree is itself a property of the
network topology, the latter type of mixing leads to some 1_2 ajb;

novel network structures not seen with other types. In Sec.
IV we give our conclusions. A preliminary report of some of

the results in this paper has appeared previously as/ R, which lies in general in the range1<r<0. One might ask

what this value signifies. Why do we not simply hawve
—1 for a perfectly disassortative network? The answer is
Il DISCRETE CHARACTERISTICS that a perfeqtly disassortative n_etwork is normally Clo_ser toa
randomly mixed network than is a perfectly assortative net-
In this section we consider assortative mixing accordingvork. When there are several different vertex tygesy.,
to discrete or enumerative vertex characteristics. Such mixfour in the case shown in Tablg then random mixing will
ing can be characterized by a quant#y, which we define  most often pair unlike vertices, so that the network appears
to be the fraction of edges in a network that connect a verteto be mostly disassortative. Therefore, it is appropriate that
of type i to one of typej. On an undirected network this the valuer=0 for the random network should be closer to
quantity is symmetric in its indices;;=e€;;, while on di- that for the perfectly disassortative network than for the per-
rected networks or bipartite networks it may be asymmetricfectly assortative one.
It satisfies the sum rules A quantity with properties similar to those of E@) has
been proposed previously by Gupta, Anderson, and May
[26]. However, the definition of Gupta, Anderson, and May
D e;=1, E ej=a, E ej=b;. (1) gives misleading results in certain §ituati0ns, such as, for
i ] . example, when one type of vertex is much less numerous
than other types, as is the case in Table I. In this paper
therefore we use Eq2), which does not suffer from this
wherea; andb; are the fraction of each type of end of an problem. The difference between the two measures is dis-
edge that is attached to vertices of typeOn undirected cussed in more detail in Appendix A.
graphs, where the ends of edges are all of the same type, Using the values from Table | in Eq2), we find thatr
a;=b; [23]. =0.621 for the network of sexual partnerships, implying, as
For example, Table | shows data on the valueg;pfor e observed already, that this network is strongly assortative
mixing by race among sexual partners in a 1992 study camy race—individuals draw their partners from their own
ried out in the city of San Francisco, Californiad]. This  group far more often than one would expect on the basis of
part of the study focused on heterosexuals, so this is a bipagure chance.
tite network, the two vertex types representing men and As another example of the application of Eg), consider
women, with edges running only between vertices of unlikethe network studied by Girvan and Newmf6] represent-
types. This means that in this case the ends of an edge ajigy the timetable of American college football games, in
different and the matrixe;; is asymmetric. As the table which vertices represent universities and colleges, and edges
shows, mixing is highly assortative in this network, with represent regular season games between teams during the
individuals strongly preferring partners from the same groupyear in question. Colleges are grouped into “conferences,”
as themselves. which are defined primarily by geography, and teams nor-
mally play more often against other teams in their own con-
ference than they do against teams from other conferences.
In other words, there should be assortative mixing of col-
To quantify the level of assortative mixing in a network leges by conference in the schedule network. For the 2000
we define arassortativity coefficienthus season schedule studied in Rf6], we find a value for the

A. Measuring discrete assortative mixing
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assortativity coefficient of =0.586, again indicating strong that the partition{r;} takes a particular value is given by the
assortative mixing, i.e., colleges do indeed play games witlmultinomial distribution
their conference partners to a substantially greater degree

- - . 1] ¢; |5
than one would expect in a randomly mixed network. P(')(k,{rj})=k! = ij . 6)
It is also useful to know the expected statistical error on pori!
the value ofr, so that we can evaluate the significance of our 2 €ij

results. One way to calculate this error is to use the jackknife

method[27]. Regarding each of thel edges in a network as  Now, generalizing Refi35], we define a generating function

an independent m.easurement of the contributions to the elgy the distributions of the numbers of edges connecting to
ments of the matribe, we can show that the expected stan-each type of vertex:

dard deviations, on the value of satisfies
5 M Gg)(XLXz, ce ,Xn):go p&”% 5( k,E_ rj)
ot=2, (=) @ i
X PO(K{r X2 - x". (7)

wherer; is the value ofr for the network in which theth

edge is removed. For example, in the case of the matrix OIfDerformlng the sum ovejr ., this gives

Table | this giveso,=0.014, which, when compared with k
the valuer =0.621 shows that our finding of assortative mix- E €ij X
ing is strong!y statistically S|g_n|f|cant—a QOreguIt. . GS)(xl,xz, o ,Xn)=z p(k|)
Although it has a rather different physical interpretation, K E o
— Fij
i

the coefficientr is mathematically similar to the intraclass
correlation coefficients used in statistics to compare mea-

surements across different groups in a populaiidj. Stan- >
dard results for errors on intraclass correlations can be . ; &ijX;
adapted to the present case to show that another estimate of =G8) — ], (8)
the error orr is [29] 2 &ij
2
2 aibi+ E aibi _2 aizbi_z aibi2 where
2 1 I I I I
M - O (0 (i) k
1_2 aibi G0 (X):Ek: Pi’X (9)

is the fundamental generating function for the degree distri-
bution p{’, as defined in Ref.35]. Similarly, for the edges
connected to a vertex of tygereached by following a ran-
rc]omly chosen edge on the graph we have

which giveso,=0.012 for the data of Table |, comparable
with the jackknife method. Either method for estimating
will be adequate for most purposes—the choice betwee
them is a matter of convenience.

B. Models of discrete assortative networks 2 €ij X

| |
The generalized random graph models of networks stud- G (X1 %z, - - Xn)=GY) (10
ied in the past by various authdi30—36 can be extended to 2 €]
the case of assortative mixing on discrete characteristics. :
Suppose we are told the degree distributigh for vertices  \ith

of typei=1, ... nin a network and the value of the mixing

matrix e;; . Implicitly, we are also told the values of the (ko1

quantitiesa; and b;, since we can extract them from; ; kpy'x 1 dg®

using Eq.(1). We consider the ensemble of all graphs with G(li)(x)= -0 , (11
these values qb(k') ande;; , which gives us a random graph > kp( z dx x=1

model similar in spirit to that of Ref$30—34 for the case of K K

specified degree distribution only. Many properties of this ,

ensemble can be calculated exactly in the limit of large syswherezi=G{)'(1) is the mean degree for typevertices.

tem size, as we now demonstrate. Now we consider the total number of vertices reachable
Suppose that a vertex of typenas degreé. Thek verti- by following an edge that arrives at a vertex of tyipdhis

ces at the other ends of the edges attached to this vertex anember has a distribution that is generated by a generating

divided among the possible vertex types according to some function H(l') satisfying a self-consistency condition of the

partition {rq,r,, ... rn}, where>;r;=k. The probability form
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HPx)=xGPHV (%), ... HY(x)]. (120 The probability that a randomly chosen vertex of tyjgnot
a member of the giant component is th&§’(u,, . . . ,uy),
And similarly the distribution of the number of vertices and the overall fractiors of vertices that are in the giant
reachable from a randomly chosen vertex of tyjggener- component is given by
ated by

i iy (1 S=1- RYOnY Up) (19
HP 00 =xGPHP ), ... HP0]. (13 = 7, o0 UL th),

By solving these two equations simultaneously, we can dewhere we have made use of the fact that the fraction of
rive the complete component size distribution in our modelvertices of type in the network is equal ta; /z; .
Here however, we will just calculate some of the more im-  The simultaneous solution of Eq4.8) and(19) gives us
portant average statistics of our networks from the generathe value ofS for our network. In many cases we find that
ing functions. For example, the mean numbeof vertices  these equations are not solvable in closed form, but they can
reachable from a vertex of typds easily be solved numerically by iteration of E{.8) from
suitable starting values for the , and then substituting the

i) result into Eq.(19).
Ej: e;HY (1) a19
=1+G{"(1)——m—. (19

ot 2 ey
I

dH{)
dx

Si= C. Simulating discrete assortative networks

We would also like to be able to generate random net-
works with a given level of assortative mixing, in order to
We can write this in matrix form thus as check our analytical results and also for use as substrates for

other models, such as, for example, epidemiological models.
s=1+mg-Hy(1), (15 A simple algorithm for achieving this is the following.
(1) We first choose a size for our graph in terms of the
wherem, is the matrix with elementg;g;; /a; . Differentiat-  numberM of edges and we draM edges from the distribu-

ing Eq. (12), we then find that tion e;; . That is, we generatél edges, each one identified by
. the types of the vertices that it connects, in some manner
s=1+mg-[I-my] "1, (160 such that the fraction of edges connecting vertices of types

. andj tends toe;; asM becomes large. In practice, a simple
wherel is the vector whose elements are all 1, and the Maf ansformation method works welB7]

trix m; has elements (2) We count the number of ends of edges of each fype
to give the sumsn; of the degrees of vertices in each class.

[myl; :Q €ij (17) We calculate the expected numimgrof vertices of each type
1 Z) & from n;=m; /z; (rounded to the nearest integewherez; is
the desired mean degree of vertices of type
with z{"=2z, being the mean degree of typeertices and} (3) We drawn; vertices from the desired degree distribu-
being the mean number of neighbors at distance two from &on p’ for typei. In general the degrees of these vertices
typei vertex. will not sum exactly tan; as we want them to. So we choose

When the density of edges on the graph is sns4lh, Eq.  one vertex at random, discard it, and draw another from the
(16) is finite, but it grows with increasing density and then distributionp{’ until the sum does equat; .
diverges when the determinant of the matrixm; reaches (4) We pair up them; ends of edges of typeat random
its first zero. This point marks the phase transition at which awith the vertices we have generated, so that each vertex has
giant component first appears in the network, similar to thehe number of attached edges corresponding to its chosen
phase transition seen in uncorrelated random graphs. Thdegree.
condition det{—m;)=0 for the position of the phase tran-  (5) We repeat from stef3) for each vertex type.
sition is the equivalent of the condition of Molloy and Reed This method correctly generates assortatively mixed graphs
[32] for the position of the phase transition in an uncorre-with the givene;; in the limit of large graph size. In Sec.
lated random graph of arbitrary degree distribution. Il C of this paper we give some examples of simulations of
The size of the giant component can also be calculated iassortatively mixed networks.
a straightforward manner. We defineto be the probability
that a vertex of typd, reached by following a randomly |1l ASSORTATIVE MIXING BY SCALAR PROPERTIES
chosen edge in the graph, does not belong to the giant com-
ponent. This probability is precisely equal to the probability A similar, but distinct, form of assortative mixing is mix-
that none of the neighbors of that vertex are themselvemg that depends on one or more scalar properties of network
members of the giant component, and hengsatisfies the  yertices. A classic example of mixing of this type seen in

self-consistency condition many social networks is assortative mixing by age. In Fig. 1
0 (top panel we show a scatter plot of the ages of marriage
Ui=G3’(ug, ... Un). (18 partners in the 1995 U.S. National Survey of Family Growth
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O [ T T rected, unipartite grapla,=b,.) Then, if there is no assor-

I ] tative mixing e,,=a,b, . If there is assortative mixing one
can measure it by calculating the standard Pearson correla-
tion coefficient thus

= , 21)

. ’ ¢ — 030

.! .'._ 2 Xy(exy_ r51><by)

age of wife [years]

20 —

whereo, ando, are the standard deviations of the distribu-
I ] tions a, and b,. The value ofr lies in the range—1<r
oL e =<1, with r=1 indicating perfect assortativity armd=—1
indicating perfect disassortativity.e., perfect negative cor-
age of husband [years] relation betweerx andy). For the age data from Fig. 1, for

. example, we find that=0.574, indicating strong assortative
200 - M mixing once more.
] - One can construct in a straightforward manner a random
graph model of a network with this type of mixing exactly
analogous to the model presented in Sec. Il B. It is also pos-
] sible to generate random representative networks from the
100 ensemble defined bg,, using the algorithm described in

1 Sec. Il C. In this paper however, rather than working further
on the general type of mixing described here, we will con-

150 |

number
]

50—: centrate on one special example of assortative mixing by a
1 scalar property, which is particularly important for many of
. ﬂ—r the networks we are interested in, namely mixing by vertex
! ' ! | ' degree.
5 0 5 10 15 20 25

age difference [years] A. Mixing by vertex degree

FIG. 1. Top, scatter plot of the ages of 1141 married couples at |n general, scalar assortative mixing of the type described
time of marriage, from the 1995 U.S. National Survey of Family ahove requires that the vertices of the network of interest
Growth[38]. Bottom, a histogram of the age differendesale mi-  paye suitable scalar properties attached to them, such as age
nus femalg for the same data. or income in social networks. In many cases, however, data

[38]. As is clear from the figure, there is a strong positive@® Not available for_these properties to allow us to assess
correlation between the ages, with most of the density in thé/hether the network is assortatively mixed. But there is one
distribution lying along a rough diagonal in the plot; peop|e,scalar vertex property that is always available for every net-
it appears, prefer to marry others of about the same aggyork, and that is vertex degree. So long as we know the
although there is some bias towards husbands being old@€tWork structure we always know the degree of a vertex,
than their wives. In the bottom panel of the same figure wed"d then we can ask whether vertices of high-degree prefer-
show a histogram of the age differences in the study, Whidentlally associate with other vertices of high degree. Do the
emphasizes the same conclus[&8]. gregarious people hang out .Wlth other gregarious people?

By analogy with the developments of Sec. II, we can de_Th|s_has been a topic of conS|derabIe discussion in the phys-
fine a quantitye,,, which is the fraction of all edges in the '©S literature[40—44. As we will show, many real-world
network that join together vertices with valueandy for the ~ N€tworks do show significant assortatit@ disassortative
age or other scalar variable of interest. The valkesidy  MiXing by vertex degree. o
might be either discrete in natue.g., integers, such as age ASsortative mixing by degree can be quantified in exactly
to the nearest yepor continuous(exact age making e, the same way as for other scalar proper_tles of vertices, using
either a matrix or a function of two continuous variables. Ed- (21). Taking the example of an undirected network and
Here, for simplicity, we concentrate on the discrete case, bltSing the notation of Ref22], we defineey, to be the frac-
generalization to the continuous case is straightforward.  tion of edges that connect vertices of degreasdk. In fact,

As before, we can use the mate, to define a measure we choosg andk to be theexcess degreesf the vertices

of assortativity. We first note tha,, satisfies the sum rules (also calledremaining degreen R?f' [22]), which are one
less than the degrees of the vertices themselves. This is be-

cause in most cases we are interested in the number of edges
Xzy &y=1, ; Cxy= g ey=by, (200 attached to a vertex other than the particular edge we are at
the moment looking at.
wherea, andb, are, respectively, the fraction of edges that If the degree distribution of the graph as a wholejs
start and end at vertices with valugsandy. (On an undi- i.e., py is the probability that a randomly chosen vertex will
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have degreg&, then the excess degree of the vertex at the endheaning that they are not statistically different from zero. All

of an edge is distributed according [t85] the others however fit the pattern clearly, with positive values
of r for the social networks and negative values for all the

(k+1)pgig oo  oOthers.
Q= z ' (22 What is the explanation of this phenomenon? In all prob-

ability, there are a number of different mechanisms at work.
where z=2kpy is the mean degree in the network. The Some possibilities are the following.

distributionq is related toe, via (1) In the social networks it is entirely possible, and is
often assumed in the sociological literature, that similar
Z €=y (23) people do attract one another, and therefore that there could
J

be a real preference among gregarious people for association
with other gregarious people, and similarly for hermits.
The correct assortativity coefficient for mixing by vertex de-  (2) On the other hand, the networks of collaborations be-

gree in an undirected network is tween academics, actors, and businesspeople considered here
are affiliation networks, i.e., networks in which people are
2 ik(ey — ;9 connected together by r_neml_)ership qf common grgaps
i T Hi Mk thors of a paper, actors in a film, etcSince all members of
r= 2 , (24 a group are thus connected to all other members, the positive
%q correlations between degrees may at least in part reflect the

fact that the members of a largemall group are connected
to the other members of the same latgmal) group.

(3) In the Internet and the World Wide Web there may be
organizational reasons for degree anticorrelation between

wherea is the standard deviation of the distributigp. For
a directed network the equivalent expression is

2 jk(ej— q}“q(k’“t) vertices. The high-degree vertices in these networks are often
[ = Ik (25) connectivity providerginterne} or directories(web), which
Tin0out ’ by definition tend to be connected to the “little people”—the

individual service subscribers in the case of the internet or
where gj is now the probability that a randomly chosen the individual web pages on the web.
directed edge leads into a vertex of in-degread out of a (4) Maslov and Sneppeli#1] have shown that disassorta-
vertex of out-degrek [45]. For the purposes of calculating tjyity can be produced as a finite-size effect by the constraint
for an actual network of specified vertices and edges, we caghat no two vertices in a network are connected by more than

rewrite this in the form one edge. This constraint causes high-degree vertices to “re-
pel” one another, producing negative values of his expla-
S iki—MTY 5 ks nation could account for at least a part of the disassortative
i i ¥ mixing we see in the Internet, the protein and metabolic net-
r= 7 works, and the food webs, although it cannot be applied

P \2 2 i1 2 directly to the web and neural networks, for which vertex
z ji—M E Ji E ki—M 2 ki pairs can and often do have more than one connection.

: ! ' : It appears therefore that some of the degree correlations

(26)  we see in our networks could have real social or organiza-

wherej, andk; are the excess in-degree and out-degree ofional origins, while oth'ers may be artifacts of 'the types of
the vertices that théth edge leads into and out of respec- Networks we are looking at and the constraints that are

tively, andM is again the number of edges. For an undirected?/aced on their structure.

network we can use the same formula—we simply replace
each undirected edge by two directed ones leading in oppo-

site directions. Alternatively, one can apply directly the for- B. Models of assortative mixing by degree

mula given in Ref[22], Eq. (4), to the undirected network. In Ref. [22] we studied the ensemble of graphs that have
As before, errors on the measured values oin be calcu- a specified value of the matri, and solved exactly for its
lated using the jackknife method and Ed). average properties using generating function methods similar

In Table Il we show the measured valuesrdbr degree to those of Sec. Il B. We showed that the phase transition at
correlations in undirected and directed networks of a varietyvhich a giant component first appears in such networks oc-
of different types, along with the expected errors on theseurs at a point given by ddtt- m)=0, wherem is the ma-
values. The table reveals an interesting feature: essentially alix with elementsm;,=ke;/qg;. One can also calculate ex-
the social networks examined are significantly assortative bgctly the size of the giant component, and the distribution of
degree, i.e., high-degree vertices tend to be connected ®izes of the small components below the phase transition.
other high-degree vertices, while all the technological and/Nhile these developments are mathematically elegant, how-
biological networks are disassortative. Three of the valuegver, their usefulness is limited by the fact that the generating
for r, for the network of student relationships, the powerfunctions involved are rarely calculable in closed form for
grid, and the graph of software dependencies, are null resultaybitrary specifiee;,, and the determinant of the matrik (
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TABLE Il. Size n, degree assortativity coefficient and expected errow, on the assortativity, for a
number of social, technological, and biological networks, both directed and undirected. Social networks:
coauthorship networks @#&) physicists and biologistgt6] and(b) mathematician47], in which authors are
connected if they have coauthored one or more articles in learned joumatsillaborations of film actors
in which actors are connected if they have appeared together in one or more fVjesd) directors of
fortune 1000 companies for 1999, in which two directors are connected if they sit on the board of directors
of the same compar{yt8]; (e) romantic(not necessarily sexualelationships between students at a U.S. high
school[49]; (f) network of email address books of computer users on a large computer system, in which an
edge from useA to userB indicates thaB appears inA’s address book50]. Technological networksg)
network of high voltage transmission lines in the Western States Power Grid of the United[Statés
network of direct peering relationships between autonomous systems on the Internet, Aprib2p01)
network of hyperlinks between pages in the World Wide Web domain ndoéda,1999[52]; (j) network of
dependencies between software packages in the GNU/Linux operating system, in which an edge from pack-
ageA to packageB indicates thafA relies on components d for its operation. Biological networkgk)
protein-protein interaction network in the ye&tCerevisia¢53]; (I) metabolic network of the bacteriuk
Coli [54]; (m) neural network of the nematode woi@ Elegang5,55]; tropic interactions between species
in the food webs ofn) Ythan Estuary, Scotlanb6] and (o) Little Rock Lake, Wisconsif57].

Group Network Type Size Assortativityr  Error o,

a Physics coauthorship undirected 52909 0.363 0.002

a Biology coauthorship undirected 1 520251 0.127 0.0004

b Mathematics coauthorship  undirected 253339 0.120 0.002
Social c Film actor collaborations undirected 449913 0.208 0.0002

d Company directors undirected 7673 0.276 0.004

e Student relationships undirected 573 -0.029 0.037

f Email address books directed 16 881 0.092 0.004

g Power grid undirected 4941 —0.003 0.013
Technological h Internet undirected 10697 —0.189 0.002

i World Wide Web directed 269504 —0.067 0.0002

i Software dependencies directed 3162 -0.016 0.020

k Protein interactions undirected 2115 -0.156 0.010

I Metabolic network undirected 765 —0.240 0.007
Biological m Neural network directed 307 —0.226 0.016

n Marine food web directed 134 -0.263 0.037

o] Freshwater food web directed 92 -0.326 0.031

—m) almost never is. In this paper, therefore, we take arl58,59. The algorithm is as follows.
alternative approach, making use of computer simulation. (1) Given the desired edge distributiay,, we first cal-

We would like to generate on a computer a random netculate the corresponding distribution of excess degrges
work having, for instance, a particular value of the matrixfrom Eg. (23), and then invert Eq(22) to find the degree
ej« . [This also fixes the degree distribution, via E2@).] In  distribution:

Ref.[22] we discussed one possible way of doing this using

an algorithm similar to that of Sec. Il C. One would draw = AGe-2/k _ (27)
edges from the desired distributief, and then join the de- S g4

greek ends randomly in groups & to create the network. j Qj-1/)

(This algorithm has also been discussed recently by

Dorogovtsev, Mendes, and Samukti#?].) As we pointed

out, however, this algorithm is flawed because in order tdNote that this equation cannot tell us how many vertices
create a network without any dangling edges the number dhere are of degree zero in the network. This information is
degreek ends must be a multiple & for all k. It is very  not contained in the edge distributia), since no edges
unlikely that these constraints will be satisfied by chancegonnect to degree-zero vertices, and so must be specified
and there does not appear to be any simple way of arrangirggparately. On the other hand, most of the properties of net-
for them to be satisfied without introducing bias into theworks with which we will be concerned here do not depend
ensemble of graphs. Instead, therefore, we use a Monte Cartn the number of degree-zero vertices, so we can safely set
sampling scheme which is essentially equivalent to thepo=0 for the purposes of this paper.

Metropolis—Hastings method widely used in the mathemati- (2) We draw a degree sequence, a specifickseif de-

cal and social sciences for generating model networkgrees of the vertices=1, ... N, from the distributionp,,
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and connect vertices together randomly in pairs to generateracted network, so tha&, is symmetric. A ranka symmetric
random graph, as described, for instance, by Molloy andnatrix hasin(n+1) degrees of freedorm of which are
Reed[32]. fixed in this case by the requirement, Eg3), that the rows
(3) We choose two edges at random from the graph. Leaind columns sum tq, leavingzn(n—1) that can be freely
us denote these by the vertex paiws (w,) and v,,w,) that  chosen.[One could think for example of choosing the
they connect. in(n—1) off-diagonal elements o#;, and then satisfying
(4) We measure the excess degrgesk;,j,,k, of the  Eq.(23) by choosing then diagonal elements to give the row
verticesvq,Wq,v5,W, and then we remove the two edges and column sums the desired valges.

and replace them with two new ones;(v,) and (wq,w5,) A simple example of a disassortative choice éqr is the
with probability set of matrices taking the form
(d) — _
e..e €’ = i XK+ X — Xi X (31
Jripkeks . jk "k 4k Nk
# if € 1l 2ek1k2< € 1k1ej 2Kz
P=1 TlikiTiak, (280  wherex, is any distribution normalized such thagx,=1. It
_ is easy to see that this choice satisfies the constraingg.on
1 otherwise. and the resulting value afis
(5) Repeat from stef3). o (#q—Mx)Z 32
. d— — 2 ]
Clearly this swap procedure preserves the degree se- Oq

guence. It is also ergodic over the set of graphs with that = | )
degree sequence, i.e., it can reach any graph within that set ich is always negativéor zerg. Here uq and u, are the
a finite number of moves. To see this, consider any configu™eans of the distributiong, andx,, respectively.
ration of the graph other than the desired target configuration Being & probability,e;. is also constrained to lie in the
and choose any vertex pair that is not joined by an edge if@nge 0<ej =<1 for all j,k. To ensure that Eq31) never
that configuration buis joined by an edge in the target. becomes negative we should choogeto decay faster than
These vertices must necessarily each be attached to at le&t: )
one other edge that does not exist in the target configuration. Suppose for example that we are interested, as many
Take these edges and perform the swap procedure on theRgOPIe seem to be these days, in networks that have power-
This always increases the number of edges that the configlaw degree distributiongy,~k~"[1-3,7,34,52,61-65True
ration has in common with the target. And since it is alwaysPower laws unfortunately are troublesome to deal with; the
possible to do this, it immediately follows that any targetcrucial distributiongy has a divergent mean unless-3,
configuration can be reached in at mddt such moves, which it seldom is for real-world networksee, for instance,
whereM is the number of edges in the networlctually, ~ Ref.[2], Table I). Instead, therefore, following Ref35], we
M — 1 will suffice, since the last edge will always automati- here examine the exponentially truncated power-law distri-
cally be in the correct position by a process of eliminagion. bution

Our algorithm also satisfies detailed balance. We would

like to sample graph configuratiopswith probabilities[60] D= k™ 7e™ M for k=1 (33)
K= e =1,
y Li (e 1)
p#:iﬂl Ciikp» (29 \yhere the function Li(x), which acts here as a normalizing

constant, is theth polylogarithm ofx. This gives a similar
wherej; ,k; are the excess degrees of the vertices at the endéistributiong,~ (k+1)~""te” (K* 1/« for the excess degree,
of theith edge. It is trivial to show that with the choice of and we choosg, to have the same functional form, but with
transition probabilities given in Eq28), we satisfy detailed a different cutoff parametet’, wherex’ <k, to ensure that

balance in the form €j>0. In Fig. 2 we show a plot of the resultirgy, for 7
=2.5, k=100, k'=10. The disassortative nature of this
p.P(u—v)=p,P(v—pu) (30)  choice forey is evident from the concentration of probabil-
ity along the edges of the matrix in the figure.
for all pairsu, v of states. Introducing a cutoff in the degree distribution also pro-

Since our algorithm satisfies both ergodicity and detailed/ides us with a parameter, namety that can, as we will
balance, it immediately followg37] that in the limit of long  shortly see, be conveniently manipulated to produce a phase
time it samples graph configurations correctly from the distransition at which a giant-component appears in the net-
tribution Eq.(29). It also turns out to be a reasonably effi- work.
cient algorithm in practice. In the simulations reported here, \wWe can also make an assortative magx by writing
the mean fraction of proposed Monte Carlo moves that was
accepted never fell below 50% for any parameter values. e =2q;qc— €l , (34)

To use this algorithm we also need to choose a value for
the matrixe;, . We have a lot of freedom about how we do which gives a value for the assortativity coefficientrgt=
this. Suppose for example that we wish to simulate an undi—ry, while still having the same degree distribution. More
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30 FIG. 3. Monte Carlo simulation results for the size of the giant
j component in graphs with the degree distribution E2g), as a
function of the cutoff parametex, with 7=2.5 andx’=2. The
FIG. 2. Density plot of the matrie(y’, Eq.(31), for 7=2.5,  individual curves are for different values of the assortativity, as
x=100, «"=10. Darker squares represent higher values;f marked. Each data point is an average over 100 graphs of 100 000

vertices.

generally, we would like to be able to varyfreely, keeping ) . ,
the degree distribution fixed. We can do this by writggin of r decreases. That is, the more assortative a network is, the

the form lower the edge density at which a giant component first ap-
pears. This is intuitively reasonable. In assortatively mixed
ejk:qJQk+rUc24mjka (35 networks, the high-degree vertices tend to associate prefer-
entially with one another, sticking together and forming what
where the symmetric ma’[rimjk has all row and column in the epidemiological literature is called a “core group.”
sums zero and is normalized such that Within this core group the edge density is higher than it is in
the graph as a whole, since the vertices in the group have
, higher-than-average degree. Thus one would expect to see a
% jkmy=1. (36) giant-component forming in the core group before it would
form in a graph of the same average density but with no

For any choice ofn;, satisfying these constraints, EQ5) a.\ssortat.ive mixing. Converse_ly, in graphs that are disassorya—
gives us a one-parameter family of networks parametrized b{fvely mixed, the phase transition happens at a higher density

the assortativity coefficient We can for example choose  than in neutrally mixed graphs. _ o
(2) The size of the giant component in the limit of large

mjk~quk_eJ(E):(qj —Xj) (A=), (37) is smaller_for the asfsortatively m_ixed _grap_h than for the_ neu-
tral and disassortative ones. While this might seem at first to
for any correctly normalized, . Then Eq.(35) allows us to  be at odds with the result that assortative graphs show a
interpolate smoothly betweeeﬂ(’) ande}ﬁ‘) (and beyonyl by phase transition at lower density, it is really a reflection of
simply varying the value of. Note that whenever=0, we the same underlymg mechanlsm. AIthough_ the presence of a
get a simple random graph without degree correlations, ofOre group in an assortative graph allows it to percolate at a

the type discussed by Molloy and Ref@®?] and other§66].  lower average density than other graphs, it also means that
the density in other parts of the graph, outside the core

group, is lower, and hence that the giant component is un-
likely to extend into those regions. Thus the giant component
For ej chosen according to Eq&35) and (37), with gy is confined to the core of the network, and cannot grow as
andxy taking the same truncated power-law form as in Fig.large as in a neutral or disassortative network.
2, we have performed simulations for a variety of values of A question of considerable interest in the study of net-
the parameters, «, andx’. worked systems is that of network resilience to the deletion
In Fig. 3 we show the size of the largest component in theof vertices. Suppose vertices are removed one by one from a
graph as a function ok, for three different values of the network. How many must be removed before the giant com-
assortativity coefficientr. As the cutoff parametek in-  ponent of the network is destroyed and network communica-
creases, the mean degree of the graph increases also, so thiaih between distant vertices can no longer take place? Many
the graph becomes more dense, ultimately passing the crithetworks, particularly those with highly skewed degree dis-
cal point at which a giant component develops. The figureributions, are found to be resilient to the random deletion of
reveals two findings of particular note. vertices but susceptible to the targeted deletion specifically
(1) The position of the phase transition at which the giant-of those vertices that have the highest degf8e%11,67. As
component appears moves to higher values ab the value we now show, these general results are modified by the pres-

C. Simulation results
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] when it happens to hit high-degree vertices, but, as we have
0.6 . seen, this vulnerability is diminished by the concentration of
§ —o r=02 1 the high-degree vertices in the core group. Some qualitative
2 o— r=0l1 behaviors of the system may be unaffected by assortativity,
1= —e r=0.0 b L . .
S 04 — =01 i however. For example, it is known that the fraction of verti-
Z - — r=-02 ces that must randomly fail to destroy the giant component in
g [ ] a network with a power-law degree distribution and uncorre-
“g 02 1 4 lated degrees tends to unity as graph size becomes large,
= I 1 provided the exponent of the power-law satisfies3 [10].
] Vazquez and Morenf69] have recently shown that this re-
0 LBl ' sult is not affected by the presence of assortative mixing by
0 0.005 001 0.015 0.02 0025 degree in the network, although disassortative mixing can
fraction of vertices removed make a difference.
FIG. 4. The size of the largest component in a network as a
fraction of system size as the highest-degree vertices are removed D. Discussion
one by one. Each curve is for a single network of i@rtices The results found here could have applications in a vari-

generated using the Monte Carlo method described in the text, Witgty of areas. Consider for example, the spread of diseases on
the degree dist_ribution and the matgy chosen according to Egs. networks, which has been the subject of much attention in
(3D and(33), with 7=2.5, =500, ' =5, andr values as marked. o ocent networks literatuf@0—77). The largest compo-
e e et (02 s coneerJent of the Conact nework over which a cisease spreads
; R represents the largest possible disease outbreak on that net-
disassortativer(= —0.2). : .
work, and a network with no giant component cannot show
an epidemidsystem-widg outbreak. Thus our finding, that a
ence of assortative mixing in the network. giant component forms more easily in a network that is as-
In Fig. 4, we show the size of the largest component forsortatively mixed by degree, suggests that in such networks
five networks with different values af as vertices are re- epidemic outbreaks would become possible at a lower edge
moved in decreasing order of their degree—i.e., highest dedensity than in the corresponding disassortative network. In
gree vertices firgt68]. As the figure shows, although each of the language of epidemiology, the core group of an assorta-
the networks has the same degree distribution, there is draively mixed network forms a “reservoir,” which can sustain
matic variation in the resilience of the networks with their an outbreak of the disease even when the density of the net-
assortativity. For the most assortative network, with0.2,  work as a whole is too low to do so. On the other hand, the
it requires the removal of about ten times as many highsmaller asymptotic size of the giant component in an assor-
degree vertices to destroy the giant component as for thtatively mixed network seems to imply that, when they oc-
most disassortative one, with= — 0.2, even though the dis- cur, epidemics in such networks would be restricted to a
assortative network starts out with a giant component aboutmaller segment of the population than in a similar disassor-
twice as big. tative network—the outbreak is confined mostly to the core
This finding fits naturally with our picture of an assorta- group and does not spread to the population as a whole. Thus
tive network as dominated by a core group of interconnectedtom the epidemiological point of view there are both good
high-degree vertices. Such a core group provides robustneasd bad sides to the phenomenon of assortativity.
to the network by concentrating all the obvious target verti- One could test these predictions explicitly by studying
ces together in one portion of the graph. Removing thesepidemic models such as SIR or SIRS modél8,79 on
high-degree vertices is still one of the most effective ways tassortatively mixed model networks of the type introduced
destroy network connectivity, but it is less effective becausénere. Some studies of this kind have already been carried
by removing them all from the same portion of the graph weout—see, for example, Ref$44] and [80]—although the
fail to attack other portions. And if those other portions areparticular conjectures put forward here have not been con-
themselves percolating, then a giant component will persistlusively verified.
even as the highest-degree vertices vanish. Our findings on network resilience also have some prac-
Conversely, the disassortatively mixed network is particu+tical implications. In the context of epidemiology, for in-
larly susceptible to removal of high-degree vertices becausstance, removal of vertices from the network might corre-
those vertices are strewn far apart across the network, so thgpond to immunization of individuals to prevent the spread
attacking them attacks all parts of the network at once. of disease. Assuming that the goal of a vaccination program
One can also ask about the resilience of networks undds to destroy network connectivity so that the disease in ques-
random failure of their verticegather than targeted attack tion cannot spread, our findings suggest that even targeted
[8,10,11. Although we do not treat this case in detail here, itvaccination strategies would be less effective in assortative
is reasonable to suppose that it is similar to the case of tarmetworks than in disassortative or neutral ones because of the
geted attack. If assortative mixing makes networks more reresilience of the network to this type of attack. In other con-
silient against removal of their highest-degree vertices, thetexts, however, resilience is a good thing. For example we
presumably they will also be resilient against removal ofwould like to make networks such as the internet and other
random ones; random vertex failure will do most damagecommunication or distribution networks resilient against at-
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tacks on their vertices. In this context assortative mixingcertain average properties of network ensembles. We have
would be beneficial. also described Monte Carlo methods for generating random
Unfortunately, when we look at Table I, we find a dis- graphs drawn from each of the classes discussed with speci-
couraging picture. As we pointed out in Sec. Ill A, aimost all fied values of the mixing parameters.
the social networks we have looked at are significantly as- For the case of mixing by vertex degree we have per-
sortative, meaning that they would be robust to vertex reformed extensive simulations. Two results of particular inter-
moval. But these are the very networks by which diseas€St emerge from these_studies. First, we find that networl_<s
spreads, those that we would like to be able to attack using:at are assortatively mixed by degree percolate more easily
vaccination strategies. Even the email network, which is reifhat their disassortative counterparts. That is, a giant compo-

evant to the spread of computer virug&s], is assortative nent of connected vertices forms in the network at lower

and hence resilient. On the other hand, the technological ne?—dge density than in another network with the same degree

works like the Internet, which we would like to be able to dlstnt_)unon bUt. Zero or negative assortativity. Th|s. result
may imply, for instance, that assortatively mixed social net-

protect, a;e dlsaisortatlve, and hence patrticularly vulnerabb?lorkS would support epidemic disease outbreaks more easily
to targeted attack. than disassortatively mixed ones, which would be a disheart-
ening conclusion, given our finding that most social net-
IV. CONCLUSIONS works appear to be assortative.

In this paper, we have studied the phenomenon of assor- S€cond, we find that assortatively mixed networks are
tative mixing in networks, which is the tendency for vertices more robust to the deletion of their vertices than disassorta-

in networks to connect preferentially to other vertices thatiVely mixed or neutral networks. We have studied in particu-
are like them in some way. This preference may take a nu

mar the case of the targeted deletion of the highest-degree
ber of forms. Mixing may follow discrete or enumerative vertices, which has been suggested as a possible vaccination
characteristics. In the social networks that have been th

strategy for breaking up networks of disease-causing con-
main focus of this paper, connections between people may gacts, but it is reasonable to suppose that the same result will
assortative by language, for example, or by race—peopl

@xtend also to the random deletion of vertices. This result too

may prefer to associate with others who speak the same laf£@ds {0 a rather gloomy conclusion: targeted vaccination

guage as they do or are of the same race. Mixing can also birategies may be less effective than we would hope in pre-
dictated by scalar characteristics such as age or income. yenting disease because of the assortative and hence resilient
special case of mixing by a scalar characteristic is mixingnature of social networks, while on the other hand networks

that we would hope to protect against vertex removal, com-
munication networks like the internet, for instance, will be
particularly susceptible because of their disassortative nature.

according to vertex degree, which has been shown previ
ously to be present in a variety of networks, including non-
social ones such as the Internet and protein interaction ne
works. Mixing can also be disassortative, meaning that
vertices in the network preferentially form connections to ACKNOWLEDGMENTS
others that are unlike them. . . .

We e proposed some simple measuresfor these g T ST ke Mienele Ben, s Rovenbers
of mixing, which we call assortativity coefficients. These I?arab'asi Jerry Dgavis Jennifer Dunne, Jerry Grossman
measures are positive or negative for assortative or dlsasscﬁawoong Jeong, Neo Martinez, Duncan Watts, and the Inter-

tative mixing, respectively, and zero for neutrally mixed net-, " . X o X
works. Applying our measures to a broad selection of netNiversity Consortium for Political and Social Research for
roviding data used in the calculations. This work was sup-

work data drawn from various real-world situations we have® . : ) .

shown that the phenomenon of assortative mixing is indee orted in part by the National Science Foundation under
widespread, with only a few of the networks studied showing rant Nos. DMS-0109086 and DMS-0234188.
no statistically significant biases in their mixing patterns. In
the case of mixing by vertex degree, a remarkable pattern =~ APPENDIX A: THE ASSORTATIVITY MEASURE
emerges. Almost all the social networks studied show posi- OF GUPTA, ANDERSON, AND MAY

tive assortativity coefficients while all other types of net-

works, |ncIL_1d|ng te_chnolog!cal gnd b|olog|cal _n(_atworks, of assortative mixing by discrete types different from the one
show negative coefficients, i.e., d!sagfsortatlve mixing. Only[hat we have introduced in Sec. Il A. In our notation their
three networks that showed no significant trend either WaY,aasure is

failed to follow this rule. We have offered some conjectures

about the origin of this striking regularity, but we believe it

unlikely that any single mechanism can explain the mixing > alei—ab) X eila—1

patterns of all of these disparate networks. 0= ! _ (A1)
n—1 n—1 '

Gupta, Anderson, and M&26] have defined a measure

We have also proposed a number of models of assorta-
tively mixed networks, for mixing both by discrete and by
scalar characteristics. For each of the mixing types considwahere as befora is the number of vertex types, and we have
ered it is possible to create random graph models for whictmade use oE;b;=1. Like our measure, this measure is O for
one can calculate exactly by generating function methods neutrally mixed network and 1 for a perfectly assortative
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network. In general, however, the values of the two measureflects this; we findr=0.029. The measure of Gupta,
are quite different. Here we give a simple example to illus-Anderson, and May26], however, takes a valu®=0.50.
trate the difference between the two. This appears to indicate that the network has very strong
Consider a network with three types of vertices. There ar@ssortative mixing, when in fact it does not. The reason for
100 vertices of type 1, 100 of type 2, and 2 of type 3. Thethis is that the measure of Gupta, Anderson, and May, rather
vertices of types 1 and 2 mix indiscriminately with one than giving each vertex in the network equal weight, weights
other—connections from 1 to 2 are as likely as from 1 to 1 €achtype of vertex equally, so that vertices that belong to
and so forth. The vertices of type 3 however, associate onl{2f9€ groups get less weight in the calculation than those in

among themselves and not with types 1 and 2 at all. This i§M&ll groups. In the present case, where one group is very
reflected in the matrixe for the 202 vertices thus small, the vertices in that group are weighted very heavily,
and since those vertices mix perfectly assortatively, the value

50 50 O of Q is, as a result, high. If we remove these vertices from

1 the network, the value of Gupta, Anderson, and May's
e= 505 20 %0 0. (A2)  coefficient jumps to zero. Thus the two vertices in the third
0O 0 2 group have a disproportionately large effect on the value of

Clearly most of this network—99% of it, in fact—is mixing The solution to this problem is to give each vertex equal
randomly, and hence we would expect the assortativity coefweight in the calculation, which is precisely what our mea-
ficient to be close to zero. The valuerdior the matrix above surer does.
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